Thursday 27 February 2020

Mover processo médio sempre estacionário


4.2 Modelos estacionários lineares para séries temporais onde a variável aleatória é chamada de inovação porque representa a parte da variável observada que é imprevisível dado os valores passados. O modelo geral (4.4) pressupõe que é a saída de um filtro linear que transforma as inovações passadas, ou seja, é um processo linear. Este pressuposto de linearidade é baseado no teorema de decomposição de Wolds (Wold 1938) que diz que qualquer processo discreto de covariância estacionária pode ser expresso como a soma de dois processos não correlacionados, onde é puramente determinista e é um processo puramente indeterminista que pode ser escrito como linear Soma do processo de inovação: onde é uma seqüência de variáveis ​​aleatórias não correlacionadas em série com média zero e variância comum. A condição é necessária para a estacionararia. A formulação (4.4) é uma reparametrização finita da representação infinita (4.5) - (4.6) com constante. Geralmente, é escrito em termos do operador de lag definido por, que dá uma expressão mais curta: onde os polinômios do operador lag e são chamados de polinômio e polinômio, respectivamente. Para evitar a redundância de parâmetros, assumimos que não existem fatores comuns entre os componentes e os componentes. Em seguida, estudaremos o enredo de algumas séries temporais geradas por modelos estacionários com o objetivo de determinar os principais padrões de sua evolução temporal. A Figura 4.2 inclui duas séries geradas a partir dos seguintes processos estacionários calculados por meio do genarma quantlet: Figura 4.2: séries temporais geradas por modelos Como esperado, ambas as séries temporais se movem em torno de um nível constante sem alterações de variação devido à propriedade estacionária. Além disso, esse nível é próximo da média teórica do processo, e a distância de cada ponto para esse valor é muito raramente fora dos limites. Além disso, a evolução da série mostra as saídas locais da média do processo, que é conhecido como o comportamento médio de reversão que caracteriza as séries temporais estacionárias. Vamos estudar com algum detalhe as propriedades dos diferentes processos, em particular, a função de autocovariância que captura as propriedades dinâmicas de um processo estocástico estacionário. Esta função depende das unidades de medida, de modo que a medida usual do grau de linearidade entre variáveis ​​é o coeficiente de correlação. No caso de processos estacionários, o coeficiente de autocorrelação em lag, denotado por, é definido como a correlação entre e: Assim, a função de autocorrelação (ACF) é a função de autocovariância padronizada pela variância. As propriedades do ACF são: Dada a propriedade de simetria (4.10), o ACF geralmente é representado por meio de um gráfico de barras nos atrasos não negativos que se chama correlograma simples. Outra ferramenta útil para descrever a dinâmica de um processo estacionário é a função de autocorrelação parcial (PACF). O coeficiente de autocorrelação parcial em atraso mede a associação linear entre e ajustado para os efeitos dos valores intermediários. Portanto, é apenas o coeficiente no modelo de regressão linear: as propriedades do PACF são equivalentes às da ACF (4.8) - (4.10) e é fácil provar isso (Box e Jenkins, 1976). Como o ACF, a função de autocorrelação parcial não depende das unidades de medida e é representada por meio de um gráfico de barras nos atrasos não negativos que se chama correlograma parcial. As propriedades dinâmicas de cada modelo estacionário determinam uma forma particular dos correlogramas. Além disso, pode-se mostrar que, para qualquer processo estacionário, ambas as funções, ACF e PACF, aproximam-se de zero à medida que o atraso tende para o infinito. Os modelos não são sempre processos estacionários, por isso é necessário primeiro determinar as condições de estacionaria. Existem subclasses de modelos que possuem propriedades especiais para estudá-las separadamente. Assim, quando e, é um processo de ruído branco. Quando, é um processo de ordem média móvel pura. , E quando é um processo autoregressivo puro de ordem. . 4.2.1 Processo de ruído branco O modelo mais simples é um processo de ruído branco, onde é uma seqüência de variáveis ​​médias zero não correlacionadas com variância constante. É denotado por. Este processo é estacionário se sua variância for finita, já que: verifica condições (4.1) - (4.3). Além disso, não está correlacionado ao longo do tempo, então a função de autocovariância é: a Figura 4.7 mostra duas séries temporais simuladas geradas a partir de processos com média e parâmetros zero e -0,7, respectivamente. O parâmetro autorregressivo mede a persistência de eventos passados ​​nos valores atuais. Por exemplo, se um choque positivo (ou negativo) afeta positivamente (ou negativamente) por um período de tempo maior, maior o valor de. Quando, a série se move mais grosseiramente em torno da média, devido à alternância na direção do efeito de, ou seja, um choque que afeta positivamente no momento, tem efeitos negativos sobre positivos. O processo é sempre inversível e está parado quando o parâmetro do modelo é constrangido para ficar na região. Para provar a condição estacionária, primeiro escrevemos a forma de média móvel por substituição recursiva de (4.14): Figura 4.8: Correlações de população para processos que é, é uma soma ponderada de inovações passadas. Os pesos dependem do valor do parâmetro: quando (ou), a influência de uma determinada inovação aumenta (ou diminui) ao longo do tempo. Levando expectativas para (4.15) para calcular a média do processo, obtemos: Dado que, o resultado é uma soma de termos infinitos que converge para todo o valor de somente se, nesse caso. Um problema semelhante aparece quando calculamos o segundo momento. A prova pode ser simplificada assumindo que, isto é,. Então, a variância é: Novamente, a variância vai para o infinito, exceto para, nesse caso. É fácil verificar que tanto a média quanto a variância explodem quando essa condição não se mantém. A função de autocovariância de um processo estacionário é, portanto, a função de autocorrelação para o modelo estacionário é: ou seja, o correlograma mostra uma decomposição exponencial com valores positivos sempre se for positivo e com oscilações positivas negativas se for negativo (ver figura 4.8). Além disso, a taxa de decadência diminui à medida que aumenta, portanto, quanto maior o valor, maior será a correlação dinâmica no processo. Finalmente, há um corte na função de autocorrelação parcial no primeiro atraso. Figura 4.9: correlogramas de população para processos Pode-se mostrar que o processo geral (Box e Jenkins 1976): é estacionário somente se as raízes da equação característica do polinômio se situarem fora do círculo unitário. A média de um modelo estacionário é. É sempre inversível para qualquer valor dos parâmetros. Sua ACF vai para zero exponencialmente quando as raízes são reais ou com flutuações das ondas de seno-cosseno quando elas são complexas. Seu PACF tem um corte no atraso, isto é, alguns exemplos de Correlogramas para modelos mais complexos, como o, podem ser vistos na figura 4.9. Eles são muito semelhantes aos padrões quando os processos têm raízes reais, mas assumem uma forma muito diferente quando as raízes são complexas (veja o primeiro par de gráficos da figura 4.9). 4.2.4 Modelo Médio Autoregressivo O Modelo Médio Gerencial (Ordem finita), padrão médio de ordens, é: Uma Breve Introdução à Série Moderna Definição da série Uma série temporal é uma função aleatória xt de um argumento t em um conjunto T. In Outras palavras, uma série de tempo é uma família de variáveis ​​aleatórias. X t-1. X t. X t1. Correspondendo a todos os elementos no conjunto T, onde T é suposto ser um conjunto infinito e denumerável. Definição Uma série temporal observada t t e T o T é considerada como parte de uma realização de uma função aleatória x t. Um conjunto infinito de possíveis realizações que poderiam ter sido observadas é chamado de conjunto. Para colocar as coisas de forma mais rigorosa, a série temporal (ou função aleatória) é uma função real x (w, t) das duas variáveis ​​w e t, onde wW e t T. Se nós corrigimos o valor de w. Temos uma função real x (t w) do tempo t, que é uma realização das séries temporais. Se nós corrigimos o valor de t, então temos uma variável aleatória x (w t). Para um determinado momento, existe uma distribuição de probabilidade sobre x. Assim, uma função aleatória x (w, t) pode ser considerada como uma família de variáveis ​​aleatórias ou como uma família de realizações. Definição Definimos a função de distribuição da variável aleatória w dada t 0 como P o) x (x). Da mesma forma, podemos definir a distribuição conjunta para n variáveis ​​aleatórias. Os pontos que distinguem a análise de séries temporais das análises estatísticas comuns são os seguintes (1) A dependência entre observações em diferentes pontos cronológicos no tempo desempenha um papel essencial. Em outras palavras, a ordem das observações é importante. Na análise estatística normal, assume-se que as observações são mutuamente independentes. (2) O domínio de t é infinito. (3) Temos que fazer uma inferência de uma realização. A realização da variável aleatória pode ser observada apenas uma vez em cada ponto no tempo. Na análise multivariada, temos muitas observações sobre um número finito de variáveis. Esta diferença crítica requer a assunção da estacionararia. Definição A função aleatória x t é dita estritamente estacionária se todas as funções de distribuição dimensional finita que definem x t permanecem iguais mesmo se o grupo inteiro de pontos t 1. T 2. T n é deslocado ao longo do eixo do tempo. Ou seja, se for qualquer número inteiro t 1. T 2. T n e k. Graficamente, pode-se imaginar a realização de uma série estritamente estacionária como tendo não apenas o mesmo nível em dois intervalos diferentes, mas também a mesma função de distribuição, até os parâmetros que a definem. O pressuposto da estacionaridade torna nossas vidas mais simples e menos onerosas. Sem estacionaridade, teríamos que provar o processo com freqüência em cada ponto do tempo para construir uma caracterização das funções de distribuição na definição anterior. A estacionarização significa que podemos limitar nossa atenção a algumas das funções numéricas mais simples, ou seja, os momentos das distribuições. Os momentos centrais são dados pela Definição (i) O valor médio das séries temporais t é, isto é, o momento da primeira ordem. (Ii) A função de autocovariância de t é, isto é, o segundo momento sobre a média. Se você tiver a variância de x t. Usaremos para denotar a autocovariância de uma série estacionária, onde k denota a diferença entre t e s. (Iii) A função de autocorrelação (ACF) de t é usará para denotar a autocorrelação de uma série estacionária, onde k denota a diferença entre t e s. (Iv) A autocorrelação parcial (PACF). F kk. É a correlação entre z t e z tk após a remoção de sua dependência linear mútua das variáveis ​​intervenientes z t1. Z t2. Z tk-1. Uma maneira simples de calcular a autocorrelação parcial entre z t e z tk é executar as duas regressões, em seguida, calcular a correlação entre os dois vetores residuais. Ou, depois de medir as variáveis ​​como desvios de seus meios, a autocorrelação parcial pode ser encontrada como o coeficiente de regressão LS em z t no modelo em que o ponto sobre a variável indica que é medido como um desvio de sua média. (V) As equações de Yule-Walker fornecem uma relação importante entre as autocorrelações parciais e as autocorrelações. Multiplique os dois lados da equação 10 por z tk-j e tenha expectativas. Esta operação nos dá a seguinte equação de diferença nas autocovariâncias ou, em termos de autocorrelações. Essa representação aparentemente simples é realmente um resultado poderoso. Ou seja, para j1,2. K podemos escrever o sistema completo de equações, conhecidas como as equações de Yule-Walker, da álgebra linear, você sabe que a matriz de r s é de nível total. Portanto, é possível aplicar a regra de Cramers sucessivamente para k1,2. Para resolver o sistema para as autocorrelações parciais. Os três primeiros são. Temos três resultados importantes em séries estritamente estacionárias. A implicação é que podemos usar qualquer realização finita da seqüência para estimar a média. Segundo. Se t é estritamente estacionário e E t 2 lt, então a implicação é que a autocovariância depende apenas da diferença entre t e s, não o seu ponto cronológico no tempo. Poderíamos usar qualquer par de intervalos na computação da autocovariância, desde que o tempo entre eles fosse constante. E podemos usar qualquer realização finita dos dados para estimar as autocovariâncias. Em terceiro lugar, a função de autocorrelação no caso da estacionança rígida é dada pela implicação é que a autocorrelação depende apenas da diferença entre t e s, e novamente eles podem ser estimados por qualquer realização finita dos dados. Se nosso objetivo é estimar parâmetros que são descritivos das possíveis realizações das séries temporais, então talvez a estacionalização estrita seja muito restritiva. Por exemplo, se a média e as covariâncias de x t forem constantes e independentes do ponto cronológico no tempo, talvez não seja importante para nós que a função de distribuição seja a mesma para diferentes intervalos de tempo. Definição Uma função aleatória é estacionária no sentido amplo (ou fracamente estacionário, ou estacionário no sentido de Khinchins, ou covariância estacionária) se m 1 (t) m e m 11 (t, s). A estacionança estrita não implica, por si só, uma estacionabilidade fraca. A estabilidade fraca não implica estrita estacionança. A estacionaridade estrita com E t 2 lt implica baixa estacionança. Os teoremas ergódicos estão preocupados com a questão das condições necessárias e suficientes para fazer inferências a partir de uma única realização de uma série temporal. Basicamente, isso resume-se a assumir uma estacionança fraca. Teorema Se t é debilmente estacionário com a função média m e covariância, então, isto é, para qualquer dado e gt 0 e h gt 0 existe algum número T o tal que para todo T gt T o. Se e somente se esta condição necessária e suficiente é que as autocovariâncias desaparecem, caso em que a amostra significa um estimador consistente para a média da população. Corolário Se t é fracamente estacionário com E tk xt 2 lt para qualquer t, e E tk xtx tsk x ts é independente de t para qualquer inteiro s, então se e somente se onde A conseqüência do corolário é a suposição de que xtx tk é Fracamente estacionário. O teorema ergódico não é mais do que uma lei de grandes números quando as observações estão correlacionadas. Pode-se perguntar sobre este assunto sobre as implicações práticas da estacionararia. A aplicação mais comum do uso de técnicas de séries temporais é a modelagem de dados macroeconômicos, tanto teóricos como atheóricos. Como um exemplo do primeiro, pode-se ter um modelo de acelerador multiplicador. Para que o modelo seja estacionário, os parâmetros devem ter certos valores. Um teste do modelo é então coletar os dados relevantes e estimar os parâmetros. Se as estimativas não são consistentes com a estacionaridade, então é preciso repensar o modelo teórico ou o modelo estatístico, ou ambos. Agora temos máquinas suficientes para começar a falar sobre a modelagem dos dados das séries temporais univariadas. Há quatro etapas no processo. 1. Construindo modelos a partir de conhecimentos teóricos e experienciais 2. Identificando modelos baseados nos dados (séries observadas) 3. Ajustando os modelos (estimando os parâmetros do (s) modelo (s)) 4. verificando o modelo Se na quarta etapa não estamos Satisfeito, voltamos para o primeiro passo. O processo é iterativo até verificação e ressincronização adicionais não produzem melhorias nos resultados. Diagrammaticamente Definição Algumas operações simples incluem o seguinte: O operador de retrocesso Bx tx t-1 O operador de frente Fx tx t1 O operador de diferença 1 - B xtxt - x t-1 O operador de diferença se comporta de forma consistente com a constante em uma série infinita . Ou seja, o inverso é o limite de uma soma infinita. Nomeadamente, -1 (1-B) -1 1 (1-B) 1BB 2. O operador de integração S -1 Uma vez que é o inverso do operador de diferença, o operador de integração serve para construir a soma. MODELO DE CONSTRUÇÃO Nesta seção, oferecemos uma breve revisão dos modelos mais comuns de séries temporais. Com base no conhecimento do processo de geração de dados, um escolhe uma classe de modelos para identificação e estimativa das possibilidades que se seguem. Definição Suponha que Ex t m seja independente de t. Um modelo como, com as características, é chamado de modelo autorregressivo de ordem p, AR (p). Definição Se uma variável dependente do tempo (processo estocástico) t satisfaça, então t é dito para satisfazer a propriedade de Markov. No LHS, a expectativa está condicionada à história infinita de x t. No RHS é condicionada apenas parte da história. A partir das definições, um modelo de AR (p) é visto para satisfazer a propriedade de Markov. Usando o operador de mudança de turno, podemos escrever nosso modelo AR como Teorema Uma condição necessária e suficiente para que o modelo AR (p) seja estacionário é que todas as raízes do polinômio se encontram fora do círculo da unidade. Exemplo 1 Considere o AR (1) A única raiz de 1 - f 1 B 0 é B 1 f 1. A condição para a estacionaria requer isso. Se, então, a série observada parecerá muito frenética. Por exemplo. Considere em que o termo de ruído branco tenha uma distribuição normal com uma média zero e uma variância de uma. As observações mudam de sinal com quase todas as observações. Se, por outro lado, a série observada será muito mais suave. Nesta série, uma observação tende a estar acima de 0 se o antecessor estiver acima de zero. A variância de e t é s e 2 para todos os t. A variância de x t. Quando é zero, é dado por Uma vez que a série está estacionada, podemos escrever. Assim, a função de autocovariância de uma série AR (1) é, supondo sem perda de generalidade m 0 Para ver o que isso parece em termos dos parâmetros AR, usaremos o fato de que podemos escrever xt da seguinte forma Multiplicando por x Tk e tendo expectativas Note que as autocovarianças morrem como k cresce. A função de autocorrelação é a autocovariância dividida pela variância do termo de ruído branco. Ou,. Usando as fórmulas anteriores de Yule-Walker para as autocorrelações parciais que temos Para um AR (1), as autocorrelações desaparecem exponencialmente e as autocorrelações parciais exibem uma espiga em um retardo e são zero a partir de então. Exemplo 2 Considere o AR (2) O polinômio associado no operador de atraso é que as raízes podem ser encontradas usando a fórmula quadrática. As raízes são Quando as raízes são reais e, como conseqüência, a série diminuirá exponencialmente em resposta a um choque. Quando as raízes são complexas e a série aparecerá como uma onda de sinal amortecida. O teorema de estacionaridade impõe as seguintes condições nos coeficientes AR. A autocovariância para um processo AR (2), com média zero, é dividir através da variância de xt para a função de autocorrelação. Dado que podemos escrever de forma semelhante para as segunda e terceira autocorrelações. O outro As autocorrelações são resolvidas de forma recursiva. Seu padrão é regido pelas raízes da equação de diferença linear de segunda ordem Se as raízes são reais, as autocorrelações diminuirão exponencialmente. Quando as raízes são complexas, as autocorrelações aparecerão como uma onda senoidal amortecida. Usando as equações de Yule-Walker, as autocorrelações parciais são Novamente, as auto-correções desaparecem lentamente. A autocorrelação parcial, por outro lado, é bastante distinta. Tem pontos em um e dois atrasos e é zero depois disso. Teorema Se x t é um processo AR (p) estacionário, ele pode ser gravado de forma equivalente como um modelo de filtro linear. Ou seja, o polinômio no operador de backshift pode ser invertido e AR (p) escrito como uma média móvel de ordem infinita em vez disso. Exemplo Suponha que z t seja um processo AR (1) com média zero. O que é verdadeiro para o período atual também deve ser verdade para períodos anteriores. Assim, por substituição recursiva, podemos escrever Square em ambos os lados e ter expectativas de que o lado direito desaparece como k desde f lt 1. Portanto, a soma converge para z t em média quadrática. Podemos reescrever o modelo AR (p) como um filtro linear que sabemos estar parado. A função de autocorrelação e autocorrelação parcial Geralmente Suponha que uma série estacionária z t com zero médio seja reconhecida como autoregressiva. A função de autocorrelação de um AR (p) é encontrada ao assumir expectativas e dividir através da variância de z t. Isso nos diz que r k é uma combinação linear das autocorrelações anteriores. Podemos usar isso na aplicação da regra de Cramers para (i) na resolução de f kk. Em particular, podemos ver que essa dependência linear causará f kk 0 para k gt p. Esta característica distintiva das séries autorregressivas será muito útil quando se trata de identificação de uma série desconhecida. Se você tem o MathCAD ou o MathCAD Explorer, então você pode experimentar interatividade com algumas das idéias AR (p) apresentadas aqui. Modelos médios em movimento Considere um modelo dinâmico em que a série de interesse depende apenas de alguma parte da história do termo de ruído branco. Diagramaticamente, isso pode ser representado como Definição Suponha que a t seja uma sequência não correlacionada de i. i.d. Variáveis ​​aleatórias com média zero e variância finita. Em seguida, um processo de ordem média móvel q, MA (q), é dado pelo Teorema: um processo de média móvel é sempre estacionário. Prova: ao invés de começar com uma prova geral, faremos isso por um caso específico. Suponha que z t seja MA (1). Então . Claro, um t tem média zero e variância finita. A média de z t é sempre zero. As autocovariâncias serão dadas por Você pode ver que a média da variável aleatória não depende do tempo de qualquer maneira. Você também pode ver que a autocovariância depende apenas do deslocamento s, não de onde na série começamos. Podemos provar o mesmo resultado de forma mais geral começando com, que tem a representação média móvel alternativa. Considere primeiro a variância de z t. Por substituição recursiva, você pode mostrar que isso é igual a A soma que sabemos ser uma série convergente, então a variância é finita e é independente do tempo. As covariâncias são, por exemplo, você também pode ver que as covariâncias automáticas dependem apenas dos pontos relativos no tempo e não do ponto cronológico no tempo. Nossa conclusão de tudo isso é que um processo MA () é estacionário. Para o processo geral de MA (q), a função de autocorrelação é dada por A função de autocorrelação parcial irá desaparecer suavemente. Você pode ver isso invando o processo para obter um processo AR (). Se você tem MathCAD ou MathCAD Explorer, então você pode experimentar interativamente com algumas das idéias de MA (q) apresentadas aqui. Autoregressivo Misto - Definição de Modelos Média em Movimento Suponha que a t seja uma sequência não correlacionada de i. i.d. Variáveis ​​aleatórias com média zero e variância finita. Em seguida, um processo de ordem vertical auto-regressivo (p, q), ARMA (p, q), é dado pelas raízes do operador autorregente devem estar todos fora do círculo da unidade. O número de incógnitas é pq2. Os p e q são óbvios. O 2 inclui o nível do processo, m. E a variância do termo de ruído branco, sa 2. Suponha que combinamos nossas representações AR e MA de modo que o modelo seja e os coeficientes sejam normalizados de modo que bo 1. Então, essa representação é chamada ARMA (p, q) se a Raízes de (1) todos ficam fora do círculo da unidade. Suponha que o y t seja medido como desvios da média, então podemos soltar um o. Então a função de autocovariância é derivada de se jgtq, então, os termos MA abandonam a expectativa de dar. Ou seja, a função de autocovariância parece uma AR típica para atrasos após q eles morrem suavemente após q, mas não podemos dizer como 1,2,133, Q vai olhar. Também podemos examinar o PACF para esta classe de modelo. O modelo pode ser escrito como Podemos escrever isso como um processo de MA (inf) que sugere que os PACFs desaparecem lentamente. Com alguma aritmética, podemos mostrar que isso acontece somente após os primeiros p picos contribuídos pela parte AR. Direito empírico Na realidade, uma série de tempo estacionária pode ser representada por p 2 e q 2. Se o seu negócio é fornecer uma boa aproximação à realidade e a bondade de ajuste é seu critério, então um modelo pródigo é preferido. Se o seu interesse é a eficiência preditiva, o modelo parcimonioso é preferido. Experimente com as idéias ARMA apresentadas acima com uma planilha de MathCAD. Integração Autoregressiva Modelos de média em movimento Filtro MA Filtro AR Integre o filtro Às vezes, o processo, ou série, estamos tentando modelar não está estável nos níveis. Mas pode estar parado em, digamos, as primeiras diferenças. Ou seja, na sua forma original, as autocovariâncias para a série podem não ser independentes do ponto cronológico no tempo. No entanto, se construímos uma nova série, que é a primeira diferença da série original, esta nova série satisfaz a definição de estacionaria. Este é frequentemente o caso com dados econômicos que são altamente tendenciosos. Definição Suponha que z t não seja estacionário, mas z t - z t-1 satisfaz a definição de estacionararia. Além disso, em, o termo de ruído branco tem média e variância finitas. Podemos escrever o modelo como Este é chamado de modelo ARIMA (p, d, q). P identifica a ordem do operador AR, d identifica a energia. Q identifica a ordem do operador de MA. Se as raízes de f (B) estiverem fora do círculo da unidade, podemos reescrever o ARIMA (p, d, q) como um filtro linear. Isto é, Pode ser escrito como MA (). Reservamo-nos a discussão da detecção de raízes das unidades para outra parte das notas da aula. Considere um sistema dinâmico com x t como uma série de entrada e y t como uma série de saída. Diagrammaticamente temos Estes modelos são uma analogia discreta de equações diferenciais lineares. Suponhamos a seguinte relação onde b indica um atraso puro. Lembre-se de que (1-B). Fazendo essa substituição, o modelo pode ser escrito Se o polinômio do coeficiente em y t pode ser invertido, então o modelo pode ser escrito como V (B) é conhecida como função de resposta ao impulso. Vamos encontrar esta terminologia novamente em nossa discussão posterior de vetores autorregressivos. Modelos de cointegração e correção de erros. IDENTIFICAÇÃO DO MODELO Tendo decidido uma classe de modelos, agora é preciso identificar a ordem dos processos que geram os dados. Ou seja, é preciso fazer as melhores suposições quanto à ordem dos processos AR e MA que conduzem as séries estacionárias. Uma série estacionária é completamente caracterizada por suas médias e autocovariâncias. Por razões analíticas, geralmente trabalhamos com as autocorrelações e autocorrelações parciais. Essas duas ferramentas básicas possuem padrões únicos para processos estacionários AR e MA. Pode-se calcular as estimativas da amostra das funções de autocorrelação e autocorrelação parcial e compará-las com os resultados tabulados para modelos padrão. Função de Autocovariância de Amostra Função de Autocorrelação de Amostra As autocorrelações parciais de amostra serão Usando as autocorrelações e as autocorrelações parciais são bastante simples em princípio. Suponhamos que tenhamos uma série z t. Com zero, o que é AR (1). Se corremos a regressão de z t2 em z t1 e z t, esperamos encontrar que o coeficiente em z t não era diferente de zero, pois essa autocorrelação parcial deveria ser zero. Por outro lado, as autocorrelações para esta série devem diminuir exponencialmente para aumentar os atrasos (veja o exemplo AR (1) acima). Suponha que a série seja realmente uma média móvel. A autocorrelação deve ser zero em todos os lugares, mas no primeiro atraso. A autocorrelação parcial deve desaparecer exponencialmente. Mesmo a partir do nosso rompimento muito superficial através dos fundamentos da análise de séries temporais, é evidente que existe uma dualidade entre os processos AR e MA. Essa dualidade pode ser resumida na tabela a seguir.

No comments:

Post a Comment